More frequent flooding of existing flood-prone areas resulting in more frequent disruption of power, access to goods, services and jobs, and strain on regional and local disaster response and recovery resources.

More extensive, longer-duration flooding that damages communities and infrastructure currently not in flood-prone areas, lengthens disruptions, and increases the demands on disaster response and recovery resources.

Shoreline erosion & overtopping of shoreline protection during storm events that flood inland areas, including communities and infrastructure that are currently protected.

By exploring the many climate scenarios connected to the ten water levels shown on the matrix, we are able to begin planning for current and future flooding, including temporary and permanent flooding.

This approach also keeps us adaptable to changes in scientific and regulatory guidance over time. For example, the State of California, Ocean Science Trust, “Update on SLR Science” (2017) states that the likely range for SLR in the Bay is between 7.2”-13.2” by 2050. We can explore this scenario by referring to our ART maps that fall into this range (MHHW+12” SLR).

Once the State’s SLR guidance report is released to accompany this science update, we may wish to dig further into another scenario. Following the “One Map = Many Futures” approach, this is a simple task as a wide range of climate scenarios will already have been explored.